(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
double(x) → +(x, x)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
double(0') → 0'
double(s(x)) → s(s(double(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
+'(s(x), y) → s(+'(x, y))
double(x) → +'(x, x)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
double(0') → 0'
double(s(x)) → s(s(double(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
+'(s(x), y) → s(+'(x, y))
double(x) → +'(x, x)
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
double,
+'They will be analysed ascendingly in the following order:
+' < double
(6) Obligation:
TRS:
Rules:
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
+'(
s(
x),
y) →
s(
+'(
x,
y))
double(
x) →
+'(
x,
x)
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
+', double
They will be analysed ascendingly in the following order:
+' < double
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':s2_0(
a),
gen_0':s2_0(
n4_0)) →
gen_0':s2_0(
+(
n4_0,
a)), rt ∈ Ω(1 + n4
0)
Induction Base:
+'(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(a)
Induction Step:
+'(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
s(+'(gen_0':s2_0(a), gen_0':s2_0(n4_0))) →IH
s(gen_0':s2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
+'(
s(
x),
y) →
s(
+'(
x,
y))
double(
x) →
+'(
x,
x)
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
double
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
double(
gen_0':s2_0(
n496_0)) →
gen_0':s2_0(
*(
2,
n496_0)), rt ∈ Ω(1 + n496
0)
Induction Base:
double(gen_0':s2_0(0)) →RΩ(1)
0'
Induction Step:
double(gen_0':s2_0(+(n496_0, 1))) →RΩ(1)
s(s(double(gen_0':s2_0(n496_0)))) →IH
s(s(gen_0':s2_0(*(2, c497_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
+'(
s(
x),
y) →
s(
+'(
x,
y))
double(
x) →
+'(
x,
x)
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n496_0)) → gen_0':s2_0(*(2, n496_0)), rt ∈ Ω(1 + n4960)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(14) BOUNDS(n^1, INF)
(15) Obligation:
TRS:
Rules:
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
+'(
s(
x),
y) →
s(
+'(
x,
y))
double(
x) →
+'(
x,
x)
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n496_0)) → gen_0':s2_0(*(2, n496_0)), rt ∈ Ω(1 + n4960)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
+'(
s(
x),
y) →
s(
+'(
x,
y))
double(
x) →
+'(
x,
x)
Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
(20) BOUNDS(n^1, INF)